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Abstract-A general method of numerical solution in the non-Hertzian elastic contact problem is developed
using rectangular subdivisions. The major application of the method given is in the sliding contact of a short
rough cylinder with an elastic half space; the contact region is the side of the cylinder, whose axis may not
be exactly aligned to the surface of the half space. The stress singularity at the ends of the cylinder is taken
as either square root (to determine stress intensification factor) or is approximated by compact elements to
reduce computing time. An iterative scheme is used and the convergence to the unknown shape of the
contact region is rapid.

INTRODUCTION

The problem of the contact of smooth elastic bodies under normal loading was first investigated
by H. Hertz[3] in 1881. He computed and verified by experiment the load distributions over the
contact area and solved for the stresses in the body through use of the Newtonian potential
function. Tomas and Hoersch[15] transformed the Hertzian solution for the stresses on the axis
of symmetry into elliptic integrals and found that shearing stresses on the axis of symmetry are
maximum at some distance under the center of the contact area. Mindlin [10] investigated the
distribution of tangential load across the area of contact, when one elastic body slides over
another identical elastic body. He found that the stress on the boundary of the contact area due
to tangential load is infinite if there is no slip; hence, the maximum value that the stress can
have is limited by the Amontons-Coulomb law.

Kalker[5], through the use of asymptotic expansions for certain surface displacement
integrals, solved the non-Hertzian contact problem for the case where the contact area was long
in the y-direction and narrow in the x-direction, where x, y, z is a rectangular coordinate system
with the z-axis perpendicular to the surface. Kalker found the shape of the contact area if a
finite cylinder whose axis is parallel to the half space is pressed into the half space, except for the
region near the tips.

Recently, the emphasis has been to employ numerical techniques to solve a large variety of
contacting body shapes that represent practical situations. Conry and Seireg[l] were among the
first to solve the contact problems by using a mathematical programming scheme to minimize
the potential energy of contact. Later, Singh and Paul[4] employed the flexibility method of
analysis to derive a system of linear equations in terms of unknown contact pressures. The
system proved to be an ill-conditioned system of linear equations. Most recently, Oh and
Trachman[ll] extended Conry's method to the contact of cylinders which were partially
crowned at the ends and determined the pressure distribution between them for certain cases of
symmetry. Hartnett[2] employed a new technique of numerical solutions for counter-formal
elastic bodies in contact problems. He used the flexibility method of analysis with the
Boussinesq half space force-displacement relations. Recent work by Kalker [6] has successfully
applied variational principles to the problems of rolling contact.

In the present method an iterative approach is developed that extends the scheme of
Hartnett. The parameters, which should be checked after each iteration, have been reduced to
one. In addition, the shear force has been included into this numerical approach, and reasonable
results have been obtained for several contact shapes; particular emphasis in this study has
been devoted to the indentation of a finite circular cylinder, whose axis is parallel to the half
space and whose side makes the contact. If the cylinder has a sharp edge (90°), then there will
be singular behavior in the vicinity of the edge.

The present approach converges to approximate the true solution after about four to five
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iterations. This convergence exists for an initial guess whose area is larger than the true contact
area !1.

The new method is roughly equally accurate as the relatively slow numerical method of Paul
and Hashemi[12], and the fast Reusner type methods[13, 8].

METHOD OF SOLUTION

We will consider the case of contact in which two bodies are first pressed normally against
each other and then are made to slide tangentially. The tangential motion is assumed to be
sufficiently great that the tangential stresses will be in the direction of the motion irrespective of
the initial surface displacements caused by slip. The tangential stresses will be related to the
normal stresses by means of the Amontons-Coulomb friction law. It is recognized that the
normal displacements caused by the tangential stresses will cause a change in the contact region
in addition to that caused by the normal load and the geometry of the bodies.

In the solution of the general problem we will make use first of the solutions by Boussinesq
and by Cerruti (see [9]).

Formulation of smooth contact problem
The contact problem may be formulated by the following considerations. Let two bodies, I

and 2, be initially in contact at point 0, which is considered as the origin of xOy coordinates in
the common tangent plane between two bodies. We first assume that there is only a normal load
over the contact area !1. In Fig. l(a) the separation function between the two bodies before
contact and in Fig. l(b) after contact are, respectively, f(x, y) and e(x, y). The following
conditions must be satisfied:

x

(a)

Fig. 1. Contact of two elastic bodies before and after the application of load.
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e(x,y)=O (x,y)En

e(x, y) 2: 0 (x, y) e n.

359

(3)

(4)

If two points on the Zl and Z2 axes in the two bodies far from the contact region are brought
together by a distance S, which is the relative approach, then the distance of two points
A,B(AB is parallel to the z-axis, the common normal of the two bodies at point 0) on the
surface of the two bodies will change from !(x, y) to e(x, y) through the relation:

e(x, y) = !(x, y) +u~ +ufz - S (5)

where u~ and ufz are normal displacements of the two bodies at points A,B due to force PN ,

Since the load-displacement relation on the surface can be taken from Love [9], we note
here that

s p.(I- 211) x
uzlz=o = 471'0 'R'-'

(6)

(7)

In the simpler case that there is no shear, then our main interest will be eqn (6), from which the
contact problem can be obviously formulated as

If p(x' y') dx' dy'
e(x,y)=!(x,y)+K, Y( ")2 ( ,)2 S

n x-x +y-y

where K 1 is an elastic parameter, defined as

(8)

(9)

where Jl10 112, 0 10 O2 are Poisson's ratios and moduli of rigidity for the two bodies, respectively.
By definition of eqns (I) - (4), for x, yEn, e(x, y) = 0, and eqn (8) becomes an integral

equation with unknowns p(x, y), S, n where by the use of the equilibrium condition

I In p(x', y') dx' dy' = PN (10)

and the condition that p(x, y) 2: 0 in n an analytical solution can be obtained for the elliptic case
and numerical methods can be used for more complicated contacting objects.

Numerical solution
The method of numerical solution is the following for the problem of frictionless contact.

Consider an initial covering of the contact area to be a rectangle of size 2NA x 2NB, which is
divided into N x L small rectangular patches with area 2A x 2B. This covering is chosen such that
the contact region n is overestimated. The covering and n are shown in Fig. 2(a). In order to solve
the integral equation (8) with e(x, y) = 0

K
I
If p(x', y')dx' dy' = S - !(x, y)

n Y(X - x'l+(y - y~2
(II)

we assume that the pressure at each path j is of constant value Pj' Then, eqn (11) will be given
in the form

k'

K 1~ FjjPj = S- Ii, i = 1, ... , k'
J=I

(12)
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2(a)

2(b)

2(c)

Fig. 2. Method of discretization of the contact area.

where k' is the number of patches in n, Fij is an influence function, and !i is !(Xi, Yi)' The
influence function Fij is the displacement K \at point i due to the distribution of unit normal load on
element j and can be calculated as

where

.<+A y+B

Fij = f f dXRd
y

x-A y-B

=[!J(x + A, Y+ B) + !M· - A, y - B) UX - A, Y+ B) - fl(X + A, y - Bn,

!J(x,y)=xlog(R+y)+ylog(R+x), R=VX2 +y2,

(13)

(14)
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2A X 2B = S is the area of patch j, and i, yare coordinates of the center of patch j with respect to
the center of patch i. We also note that the assumption is made that the displacement at the center of
the patch represents the actual displacement, which becomes more accurate as the subdivisions are
made smaller. Furthermore, the condition of global equilibrium is

k'

~ Pj = PNIS.
)=1

(15)

Thus, we have k' linear equations generated by eqns (12), (13), and conditions (1)-(4)
(equivalent to p(x, y);::: 0) in O. The unknowns are the following: pressures Pj, 8, and k'. In
the first iteration we assume that k' = kl = N x Land 0, to be a covering of size 2NA by 2LB.
Since the contact area is larger than the actual one, some of the pressures Pj near the boundary
of 0 1 will be negative (Fig. 2b),t The following set of k l + I equations can be solved for the
unknowns Pj(j = 1, ... , kt ) and 8:

k'

K I ~ FijPj - 8 = - fi
}=I

k'

~ Pj = PNIS.
J=I

(16)

(15)

Here, we assume that PN is known. Since a portion of the P/s will be negative, then the actual
maximum stress will be overestimated. Furthermore, we have for the sum of the positive loads,
~r~1 Pj > PNIS (Pj > 0). Thus, the area over which the positive P/s act also overestimates the
actualO.

For the next iteration we set those Pj's which are negative equal to zero and consider the
number of Pj's which are positive to be k2 and O2 to be the corresponding area. We now have
k2 + 1 equations for the corresponding k2 + I unknowns. The procedure is continued until
kn+ 1 = kn = k'. We note that if the problem possesses symmetries that can be determined a
priori, then the number of equations can be reduced (or the patches can be made smaller)
thereby increasing the accuracy.

NUMERICAL SOLUTION INCLUDING FRICTION

For the case of friction we also have, in addition to the normal force Pj in each subdivision,
a shear force /-LPj , where /-L is the coefficient of static friction. We assume that the direction of
this force is the same as the direction of motion of the two bodies relative to each other. The
effect on the normal displacements is to change eqn (5) to

e(x, y) = f(x, y) +u~ + uf'z + ufz + u~: - 8 (17)

where ufz and u~z are of the form given iIi relation to tangential load by eqn (7). From eqn (17)
with e(x, y) = 0 the integral equation becomes

K
I
fJ p(x', y') dx' dy' +K fJ(x - x')p(x', y') dx' dy' = 8 - f(x ) x EO (18)

nv'(X-xy+(y_y')2 2 n (X-X')2+(y_y')2 .,y, ,y

where 0 is the contact region and K2 is defined as

(19)

Here, we note that the minus sign in eqn (19) is due to antisymmetrical nature of the Cerruti
solution [9].

tThe edge pressures are actually singular, but they are being approximated by the loads over finite patches.
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Equation (18) leads to the following equation, similar to eqn (16) given earlier:

k' k'

K 1? FijPj + K2 2: F;jPj = 8 - f;, i = I, .... k',
1~1 j=1

(20)

where also eqn (15) must be used. The influence function F;j can be easily determined as

F'=f r~
II Js x'+ Y'

=fix + A, Y+ B) + fl(x - A, Y- B) - fix - A, Y+ B) - fix + A, Y- B) (21)

where

v
Hx,\')=ylogR+xtan~'~. R=Vx 2 +i.

x

We can write the solution in the form

k'

K I ? FijPj = 8 - fi
1~1

where

(22)

(23)

(24)

The method of solution is the same as with the frictionless problem. However, we note that
in this case the pressure distribution over the contact area may be symmetric only with respect
to the direction in which the shear is assumed to be applied. Therefore, we can reduce the size
of the linear equations at most by half. The matrix Fjj is not symmetric, since although the
influence function for the normal load is symmetric, the one for the shear load is antisymmetric.

Effect of sharp edge
If there are no sharp edges in the contact area, the values of P/s are finite; however, for the

case in which a sharp edge appears, as in the contact between a short rigid cylinder and an
elastic half space, the values of the Pj's become infinite as a square root near this edge. We
consider the pressure to vary with the distance of the point to the sharp edge as

P = Pil
J vf _ y~

Pil
V(21- y)y

(25)

in which 21 is the length of the cylinder, and Pj is assumed to be constant for element j, and y
represents the distance between each point of element j and the sharp edge (Fig. 3a). For this
case the stiffness matrix becomes

(26)

The one-dimensional integral above must be integrated numerically, and we use the
Gauss-Legendre quadrature method with 16 weighting points. In eqn (26) x, yare coordinates
of the point j with respect to point I, x= Xj - Xj, Y= Yj - Yi, A, B are the half size of element j.

The equilibrium equation will also change to

(27)
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Fig, 3, Method of discretization of the contact area with consideration of singular edge stresses.

or through the change of variable, cos u = I (Yi - yJ/l, (27) becomes

k'

PN =~ Fk+I,jP;
J~l

where

(28)

(29)

After a number of iterations with the same approach use as before, we obtain a set of P/'s,
where their value for edge elements is finite and smooth.

In Fig. 3(b) the centerline pressure distribution of the cylinder in contact, p, pi, and the
function p" = l!(f- yi)1I2 have been shown. These three plots are related by the equation

p == p'p ... (30)



364 N. AHMADI et al.

Thus, by having been given p' and p*, the curve for p can be obtained from eqn (30). Let the
curvatures of the cylinder in two directions be Re, RCy, where RCx == IfR and RCy== 0 for a
straight cylinder. For this case the value of p' at the edges is OA; for RCv > 0, point A will have
a reduced value and may even become zero; for RCv < 0, point A will have a higher value. The
center line pressure distribution of the cylinder in contact, for different values of RCy> 0 is
shown in Fig. 6(c).

We note also that when an edge is in contact with a half space, such as for a finite cylinder,
then the cylinder must be assumed to be rigid. This is because of the utilization made of the
elasticity solutions for the deformation of a half space. If both the cylinder and half space were
elastic, then a quarter spa;:e solution would be the appropriate one for describing the elastic
response of the cylinder.

Shape of contact region
Each row or column of pressure distribution in the contact area can be covered by a special

function which passes through them all and has in addition an infinite slope at the intersection
with the contact plane. This function is in the form of

(31)

where the weight function lJx) is

(32)

The function Fc(x) is symmetric with respect to the P-axis and the number of data points is
2N. The data points are suitable for contact indenters having no sharp edges; i.e. if the axis of
the cylinder is in the y-direction, the data points are smooth in the x-direction, and if it is
crowned in the y-direction, then the function FAx) can also be used in that direction.

For N == 2, Fc(x) gives the equation of the ellipse exactly, as expected. The value of xo,
where Fc(xo) = 0, can be determined for each row; finally, by having known values of (xo, Yo),
where Yo is the coordinate of the same row, the contact area can be plotted.

RESULTS

The technique of numerical solution developed earlier in this work can be applied to a wide
range of smooth and rough contact problems having different contact shapes. First, for
verification of the present method, we apply the comparison case of the Hertz solution. The
shapes of the two bodies in contact can be considered with good accuracy to be given by the
quadratic form for the surfaces as

(
I 1)2(1 1)2

f(x, y) == 2R\x +2R
2
: x + 2R

ly
+2R2y Y

where R1x> R2x> R\y, R2y are the principal radii (min. and max.) of the two bodies, respectively.
Furthermore, if we assume that R2< == R2y; == 00 and Rlx == 50.8 mm (2 in.), R\l == 101.6 mm (4 in.),
then, body 1 is an ellipsoid indenting body 2, which is a half-space. Body 1 can be regarded as a
fully crowned cylinder with radius R\x and crown radius R\y. The bodies will be assumed to be
made from steel with compliance

The total load applied to compress the two bodies is P == 88.96 kN OOסס2) lb.). Using the results
of the well-known solution for elliptic contact the first choice for a blanket is given as 10.16 mm
by 10.16 mm (0.4 in. by 0.4 in.), which is divided into 20 by 20 patches having the size of
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0.508 mm X 0.508 mm (0.02 in. by 0.02 in.). The results are given in the following Table:

Table.

a = Semi Maj. b = Semi Min. Po = Max. Pressure 1) = Relative
Axis Axis Approach

Hertz 4.318 mm 2.743mm 3592.3 MPa O.I66mm
Solution (0.170") (0.108'1 (52.10 x 104 psi) (0.006522'')

Presented 4.369 mm 2.819mm 3597.8 MPa O.I66mm
Num. Solution (0.172") (0.111") (52.18 x 104 psi) (0.006523'')

365

The numerical results are in very good agreement with the analytical Hertz solution and the
maximum relative error for the size of the contact area is less than 3% and for pressure is less
than 0.15%. We note that the results are given in terms of their physical quantities rather than
dimensionless values. Future test cases will involve stress distributions and contact stress
distributions that require numerical characterization since these quantities cannot be put into
simple dimensionless forms. Figure 4(a) shows the pressure distribution between body 1and the
half space, body 2, where the shape of the contact areas is compared in Fig. 4(b). Figures 4(c, d)
show the comparison of the pressure along the center line calculated by the present method as
compared with the Hertz solution. In Fig. 4(e) a frictional shear stress is addedt (/-L = 0.5) and
the normal stress is seen to change only slightly along the centerline. The contact area (not
shown) is similarly changed only slightly. The next examples are those in which the solution is
not known.

Aligned cylinder (frictionless).
Here, body 1 is a short rigid cylinder with Rx = 50.8 mm (2.0 in.), Ry = 00, and total length

1= 12.70 mm (0.50 in.) which is equal to the length of a blanket with 10 by 20 divisions and a
total load P = 26.70 kN (6000 lb.). Figures 5(a, b) show the pressure distribution and contact
area for this case. The edge stresses are not taken as singular; instead, more compact patches
are considered at the edges. Although the correct stress distribution is therefore only ap
proximated, it appears that the overall accuracy (except in the determination of stress
intensification factor) is not affected.

The singularity at the end of the cylinder can be considered as having the form (l~ - Yl- 1
/
Z

,

where y is the distance from the middle of the cylinder. Then, by assuming constant p'(x, y)
instead of p(x, y) in eqn (11) in each patch and solving eqn (12) for Pi with
P'ij , which is described in eqn (26), the results of calculating the P' distribution over the contact
area are numerically described as shown in Fig. 6(a, b). The cylinder in Fig. 6(a) has Rx =

50.8 mm (2.0 in.), Ry = ee, I = 12.70 mm (0.5 in.), and a total load P = 26.70 kN (6000 lb.), and the
cylinder in Fig. 6(b) has Rx = 50.8 mm and Ry = -762 mm (-30. in.) with a total load P =
26.70 kN. This case was also tested with more compact elements at the edges but no changes
were observed, since the p' distribution has no singularities over the entire contact. For
calculating the pressure distribution over the contact area, the following equation can then be
used

Aligned cylinder (experiment)
In order to test the accuracy of the calculation for the determination of the contact region a

modest experiment was performed. A thick sheet of polyurethene rubber was glued to a flat
base (E =3.45 MPa (500 psi), v =0.474). The rubber was coated with pumice powder and then
indented by aluminum cylinders 1= 12.7 mm (0.5 in.), R = 12.7 mm (Fig. 7a) and 1= 139.7 mm
(5.5 in.), R = 12.7 mm (Fig. 7b). The pumice was cleanly removed by the contact of the cylinder
and as has been seen by the two figures the agreement between theory and experiment is
excellent. The contact is seen to slowly vary and achieves its greatest width near the sharp
edges of the cylinder. Figure 7(c) shows the pressure distribution for the cylinder of Fig. 7(a),
uncorrected for singularity behavior at the edge.

tHere we assume one of the bodies (body 2) to be a rigid half space to calculate the effect of the shear.
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Fig. 4. Hertzian contact problem. (R y =50.8 mm (2 in.), K = 101.6 mm (4 in.), P =88.96 kN (20,000 Ib,) (a)
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Aligned cylinder with friction t
Here, we consider the rigid cylinder to be sliding in an elastic half space in a direction

perpendicular to its axis (x-direction) and with J.L == 0.8. The results are plotted in Figs. 8(a, b) in
which the form of pressure at the edges remains the same, but the shape of the pressure
distribution is no longer symmetric and the maximum pressure has moved from the center
slightly opposite to the direction of the frictional force (also see Fig. 4e) of the cylinder on the
half space.

Next, we consider the friction to be in the direction of the cylinder axis. For this case the
effect of sliding will cause changes in the stress distribution and contact area. The pressure at
the edge in the direction of the sliding will decrease, while that in the direction opposite to the
sliding will increase; the amount of the change will depend upon the value of J.L. The contact
area and the pressure distribution for this case are shown in Figs. 9(a, b).

Misaligned cylinder (frictionless)t
In this case the cylinder is not parallel to the half space, and its axis makes an angle e with

the plane of the half space. By changing,the value of e, the shape of the pressure at the edge
which is indented less into the half space will decrease and for a certain value of eo, it will
become zero. For larger values of ewe will have a receding contact situation. Examples of this
are shown in Figs. 10(a, b) and Figs. ll(a, b). We note in Fig. 10 that even a relatively small
slope can produce a drastic change in the contact area.

Conical cylinder (frictionless)t
In this case a truncated cone is pressed into the half space such that only its side makes

contact. The conical cylinder is defined by two end surfaces of radii, R\x == 5.08 mm (0.2 in.) and
R2x "" 12.70 mm (0.5 in.), and it is pressed into the half space with a force of 7.22 N (1.50 lb.).
From Fig. 12 it is clear that the highest stress will occur at the end with the smallest radius.

8(a)

BLANKET AND CONTAC ;,RL\
6 1, MM
51

°0

356 7 B

,1M

8(c)

Fig. 8. Stress distribution for a half space indented by cylinder with friction in the direction perpendicular
to the axis. P =26.70 kN (6000 lb.). R, =00, Rx =50.8 mm (2.0 in.), I = 12.7 mm (0.50 in.). Figs. (a) and (b)

show different views.

tHere, the stresses at the cylinder's sharp edges are not calculated with eqns (25)-(27). Except for stress intensification
factor the stress calculation should produce accurate results.
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9(a)

BLANKET A~lJ CO"ACT AREA.- !>1M,-

9tb)

Fig. 9. Contact problem for cylinder with friction in direction of axis. Ry =>:, Rx '" 50.8 mm (2.0 in.),
p. = 0.8, P = 26.70 kN (6000 lb.), 1= 12.70 mm (0.50 in.). (a) Pressure distn"bution (friction on half space is in

- x direction, (b) Contact area.

IOta)

BLANKET AND coNTACT AREA

:1 ldld

4 j
3'!--- !
I

8 -? 8 -5 -< -3 -2 1 • 1 11 3 4 5 8 •- Iild--- .1

-3i
-4

1O{b)

1"18· 10. Frictionless contact for cylinder with slope angle =0.003. Ry = "", Rx =50.8 rom (2 in.), P '" 26.70 kN
(6000 lb.), I'" 12.70 mm (0.50 in.). (a) Pressure distribution, (b) Contact area.
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l1(a)

2 3 • 7 •

1<:::- -=-=.-2t-- --'1 MM

-3i
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-8 -7 6 -5 -4 -3 -2 -I

l1(b}

Fig. II. Frictionless contact for cylinder with slope angle = 0.006. R, = "', R. = 50.80 mm (2 in.). P =
26.70 kN (6000 lb.), I = 12.70 mm (0.50 in.). (a) Pressure distribution. (b) Contact area.

12(a)

BLANKET AND CONTACT AREA
6r
5 MM

r------"r+- --I

-8 -1 ·6 -5 -<4, -3 -2 -1 1234~676

lolM

12(b)

Fig. 12. Frictionless contact for conical cylinder. R, = "'. R" = 5.08 mm (0.2 in.), R2x = 12.70 mm (0.5 in.).
P = 7.22 N (1.50 lb.). I = 12.7 mm (0.50 in.). E = 500 psi (3.45 MPa), v = 0.474. (a) Pressure distribution, (b)

Contact area.
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